Video Recordings for SaTML 2024
Opening Remarks
Nicolas Papernot, Carmela Troncoso
Keynotes
Watermarking (The State of the Union)
Somesh Jha
Audits and Accountability in the Age of 'Artificial Intelligence'
Deborah Raji
In order to hold those who build AI systems accountable for the consequences of their actions, we need to operationalize a system for auditing. AI audits have for years been part of the conversation in the context of online platforms but are now just beginning to emerge as a mode of external oversight and evaluation regarding the deployment of a broader range of "automated decision systems" (ADS) and other AI-branded products, including the latest crop of "generative AI" models. As AI auditing makes its way into critical policy proposals as a primary mechanism for algorithmic accountability, we must think critically about the necessary technical and institutional infrastructure required for this form of oversight to be successful.
Tutorials
Detecting the use of copyright-protected content by LLMs
Yves-Alexandre de Montjoye
(Formal) Languages Help AI agents Learn and Reason
Sheila McIlraith
Session A
Probabilistic Dataset Reconstruction from Interpretable ModelsOpenReview
Julien Ferry (École Polytechnique de Montréal, Université de Montréal), Ulrich Aïvodji (École de technologie supérieure, Université du Québec), Sébastien Gambs (Université du Québec à Montréal), Marie-José Huguet (LAAS / CNRS), Mohamed Siala (LAAS / CNRS)
Shake to Leak: Amplifying the Generative Privacy Risk through Fine-tuningOpenReview
Zhangheng LI (University of Texas at Austin), Junyuan Hong (University of Texas at Austin), Bo Li (University of Illinois, Urbana Champaign), Zhangyang Wang (University of Texas at Austin)
Improved Differentially Private Regression via Gradient BoostingOpenReview
Shuai Tang (Amazon Web Services), Sergul Aydore (Amazon), Michael Kearns (University of Pennsylvania), Saeyoung Rho (Columbia University), Aaron Roth (Amazon), Yichen Wang (Amazon), Yu-Xiang Wang (UC Santa Barbara), Steven Wu (Carnegie Mellon University)
SoK: A Review of Differentially Private Linear Models For High Dimensional DataOpenReview
Amol Khanna (Booz Allen Hamilton), Edward Raff (Booz Allen Hamilton), Nathan Inkawhich (Air Force Research Laboratory)
Concentrated Differential Privacy for BanditsOpenReview
Achraf Azize (INRIA), Debabrota Basu (INRIA)
PILLAR: How to make semi-private learning more effectiveOpenReview
Yaxi Hu (Max Planck Institute for Intelligent Systems), Francesco Pinto (University of Oxford), Fanny Yang (Swiss Federal Institute of Technology), Amartya Sanyal (Max-Planck Institute)
Session B
Fair Federated Learning via Bounded Group LossOpenReview
Shengyuan Hu (Carnegie Mellon University), Steven Wu (Carnegie Mellon University), Virginia Smith (Carnegie Mellon University)
Estimating and Implementing Conventional Fairness Metrics With Probabilistic Protected FeaturesOpenReview
Hadi Elzayn (Stanford University), Emily Black (Barnard College), Patrick Vossler (Stanford University), Nathanael Jo (Massachusetts Institute of Technology), JACOB GOLDIN (University of Chicago), Daniel E. Ho (Stanford University)
Session C
Evaluating Superhuman Models with Consistency ChecksOpenReview
Lukas Fluri (ETHZ - ETH Zurich), Daniel Paleka (Department of Computer Science, ETHZ - ETH Zurich), Florian Tramèr (ETHZ - ETH Zurich)
Certifiably Robust Reinforcement Learning through Model-Based Abstract InterpretationOpenReview
Chenxi Yang (University of Texas, Austin), Greg Anderson (Reed College), Swarat Chaudhuri (University of Texas at Austin)
Fast Certification of Vision-Language Models Using Incremental Randomized SmoothingOpenReview
Ashutosh Kumar Nirala (Iowa State University), Ameya Joshi (InstaDeep), Soumik Sarkar (Iowa State University), Chinmay Hegde (New York University)
Session D
Backdoor Attack on Un-paired Medical Image-Text Pretrained Models: A Pilot Study on MedCLIPOpenReview
Ruinan Jin (University of British Columbia), Chun-Yin Huang (University of British Columbia), Chenyu You (Yale University), Xiaoxiao Li (University of British Columbia)
REStore: Black-Box Defense against DNN Backdoors with Rare Event SimulationOpenReview
Quentin Le Roux (INRIA), Kassem Kallas (INRIA), Teddy Furon (INRIA)
EdgePruner: Poisoned Edge Pruning in Graph Contrastive LearningOpenReview
Hiroya Kato (KDDI Research, Inc.), Kento Hasegawa (KDDI Research, Inc.), Seira Hidano (KDDI Research, Inc.), Kazuhide Fukushima (KDDI Research, Inc.)
Indiscriminate Data Poisoning Attacks on Pre-trained Feature ExtractorsOpenReview
Yiwei Lu (University of Waterloo), Matthew Y. R. Yang (University of Waterloo), Gautam Kamath (University of Waterloo), Yaoliang Yu (University of Waterloo)
ImpNet: Imperceptible and blackbox-undetectable backdoors in compiled neural networksOpenReview
Eleanor Clifford (Imperial College London), Ilia Shumailov (Google DeepMind), Yiren Zhao (Imperial College London), Ross Anderson (University of Edinburgh, University of Edinburgh), Robert D. Mullins (University of Cambridge)
The Devil's Advocate: Shattering the Illusion of Unexploitable Data using Diffusion ModelsOpenReview
Hadi Mohaghegh Dolatabadi (University of Melbourne), Sarah Monazam Erfani (The University of Melbourne), Christopher Leckie (The University of Melbourne)
Session E
SoK: Pitfalls in Evaluating Black-Box AttacksOpenReview
Fnu Suya (University of Maryland, College Park), Anshuman Suri (University of Virginia), Tingwei Zhang (Cornell University), Jingtao Hong (Columbia University), Yuan Tian (UCLA), David Evans (University of Virginia)
Evading Black-box Classifiers Without Breaking EggsOpenReview
Edoardo Debenedetti (Department of Computer Science, ETHZ - ETH Zurich), Nicholas Carlini (Google), Florian Tramèr (ETHZ - ETH Zurich)
Segment (Almost) Nothing: Prompt-Agnostic Adversarial Attacks on Segmentation ModelsOpenReview
Francesco Croce (EPFL - EPF Lausanne), Matthias Hein (University of Tübingen)
Session F
Improving Privacy-Preserving Vertical Federated Learning by Efficient Communication with ADMMOpenReview
Chulin Xie (University of Illinois, Urbana Champaign), Pin-Yu Chen (International Business Machines), Qinbin Li (University of California, Berkeley), Arash Nourian (UC Berkeley, University of California, Berkeley), Ce Zhang (University of Chicago), Bo Li (University of Illinois, Urbana Champaign)
Differentially Private Multi-Site Treatment Effect EstimationOpenReview
Tatsuki Koga (University of California, San Diego), Kamalika Chaudhuri (UC San Diego, University of California, San Diego), David Page (Duke University)
ScionFL: Efficient and Robust Secure Quantized AggregationOpenReview
Yaniv Ben-Itzhak (VMware), Helen Möllering (Technical University of Darmstadt), Benny Pinkas (Bar-Ilan University), Thomas Schneider (Technische Universität Darmstadt), Ajith Suresh (Technology Innovation Institute (TII)), Oleksandr Tkachenko (Technische Universität Darmstadt), shay vargaftik (VMware Research), Christian Weinert (Royal Holloway, University of London), Hossein Yalame (TU Darmstadt), Avishay Yanai (Vmware)
Differentially Private Heavy Hitter Detection using Federated AnalyticsOpenReview
Karan Chadha (Stanford University), Hanieh Hashemi (Apple), John Duchi (Stanford University), Vitaly Feldman (Apple AI Research), Hanieh Hashemi (Apple), Omid Javidbakht (Apple), Audra McMillan (Apple), Kunal Talwar (Apple)
OLYMPIA: A Simulation Framework for Evaluating the Concrete Scalability of Secure Aggregation ProtocolsOpenReview
Ivoline Ngong (University of Vermont), Nicholas Gibson (University of Vermont), Joseph Near (University of Vermont)
Session G
Model Reprogramming Outperforms Fine-tuning on Out-of-distribution Data in Text-Image EncodersOpenReview
Andrew Geng (University of Wisconsin, Madison), Pin-Yu Chen (International Business Machines)
Data Redaction from Conditional Generative ModelsOpenReview
Zhifeng Kong (NVIDIA), Kamalika Chaudhuri (UC San Diego, University of California, San Diego)
Towards Scalable and Robust Model VersioningOpenReview
Wenxin Ding (University of Chicago), Arjun Nitin Bhagoji (University of Chicago), Ben Y. Zhao (University of Chicago), Haitao Zheng (University of Chicago)
Session H
SoK: AI Auditing: The Broken Bus on the Road to AI AccountabilityOpenReview
Abeba Birhane (Trinity College Dublin), Ryan Steed (Carnegie Mellon University), Victor Ojewale (Brown University), Briana Vecchione (Cornell University), Inioluwa Deborah Raji (Mozilla Foundation)
Under manipulations, are there AI models harder to audit?OpenReview
Augustin Godinot (Université Rennes I), Gilles Tredan (LAAS / CNRS), Erwan Le Merrer (INRIA), Camilla Penzo (PEReN - French Center of Expertise for Digital Platform Regulation), Francois Taiani (INRIA Rennes)
Session I
SoK: Unifying Corroborative and Contributive Attributions in Large Language ModelsOpenReview
Theodora Worledge (Computer Science Department, Stanford University), Judy Hanwen Shen (Stanford University), Nicole Meister (Stanford University), Caleb Winston (Computer Science Department, Stanford University), Carlos Guestrin (Stanford University)
CodeLMSec Benchmark: Systematically Evaluating and Finding Security Vulnerabilities in Black-Box Code Language ModelsOpenReview
Hossein Hajipour (CISPA, saarland university, saarland informatics campus), Keno Hassler (CISPA Helmholtz Center for Information Security), Thorsten Holz (CISPA Helmholtz Center for Information Security), Lea Schönherr (CISPA Helmholtz Center for Information Security), Mario Fritz (CISPA Helmholtz Center for Information Security)
Navigating the Structured What-If Spaces: Counterfactual Generation via Structured DiffusionOpenReview
Nishtha Madaan (Indian Institute of Technology Delhi), Srikanta J. Bedathur (Indian Institute of Technology, Delhi)
Understanding, Uncovering, and Mitigating the Causes of Inference Slowdown for Language ModelsOpenReview
Kamala Varma (University of Maryland, College Park), Arda Numanoğlu (Middle East Technical University), Yigitcan Kaya (University of California, Santa Barbara), Tudor Dumitras (University of Maryland, College Park)
Competitions
Find the Trojan: Universal Backdoor Detection in Aligned Large Language ModelsWebsite
organized by Javier Rando & Stephen Casper & Florian Tramèr.
CNN Interpretability CompetitionWebsite
organized by Stephen Casper & Dylan Hadfield-Menell.
Large Language Models Capture-the-FlagWebsite
organized by Sahar Abdelnabi & Nicholas Carlini & Edoardo Debenedetti & Mario Fritz & Kai Greshake & Richard Hadzic & Thorsten Holz & Daphne Ippolito & Daniel Paleka & Javier Rando & Lea Schönherr & Florian Tramèr & Yiming Zhang.
Closing Remarks
Nicolas Papernot, Carmela Troncoso