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Abstract—We present the findings of the Machine Learning
Model Attribution Challenge (https://mlmac.io). Fine-tuned ma-
chine learning models may derive from other trained models
without obvious attribution characteristics. In this challenge,
participants identify the publicly-available base models that
underlie a set of anonymous, fine-tuned large language models
(LLMs) using only textual output of the models. Contestants
aim to correctly attribute the most fine-tuned models, with ties
broken in the favor of contestants whose solutions use fewer calls
to the fine-tuned models’ API. The most successful approaches
were manual, as participants observed similarities between model
outputs and developed attribution heuristics based on public
documentation of the base models, though several teams also
submitted automated, statistical solutions.

Index Terms—digital forensics, machine learning, natural lan-
guage processing,

I. INTRODUCTION

The announcement of GPT-2, a large language model
(LLM) that could generate text of “unprecedented quality,”
brought new concerns to the forefront of responsible AI
in 2019 [1]. Ongoing algorithmic advances and increases
in compute capacity have enabled big tech companies to
train multi-billion parameter neural networks on web scale
collections of text. The resulting models write so fluently
that even humans trained to detect machine-generated content
can be fooled about 30% of the time [2]. Meanwhile, the
culture in the natural language processing (NLP) community
has moved toward open sourcing these ‘foundation models’
with permissive licenses, allowing much smaller and less-
resourced entities to deploy them, often after further training
them to specialize them to a different domain or task (fine-
tuning) [3]. Since publicly released, trained LLMs can be
fine-tuned at a relatively low cost and generate specialized
synthetic text at scale, they may empower more actors to
engage in malicious uses, for example through cheaper and
more effective disinformation [4], [5]. It is unclear how widely
LLMs are used for deceptive purposes today.

Possible mitigations for this new threat include ensuring
that synthetic text can be identified as non-human and its
origins traced [5]. Incorporating a watermark into LLM output
has been proposed as a safeguard to privacy and intellectual
property [6], [7], but is not widely practiced. This compe-
tition asks what traces of provenance can be gleaned from
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synthetic text that lacks explicit marking. To our knowledge,
no generalized forensic process exists to trace textual output
from customized models back to the base model. Attribution
techniques could represent a powerful tool for regulation,
tracking, and remediation where LLMs are misused.

The Machine Learning Model Attribution Challenge calls
upon contestants to develop creative solutions to uncover
model provenance. Contestants interact with a set of fine-tuned
models via a text generation API, attributing each back to a
known set of LLMs (‘base models’). Building out forensic
capabilities and establishing the difficulty of model attribution
is a step toward assured use of LLMs and artificial intelligence
in general.

In this paper, we describe the competition and summarize
new methods of attribution proposed by the participants.

II. COMPETITION DETAILS

MLMAC launched at DEFCON 30’s AI Village with pro-
motion through the Village and sponsor social media sites. The
first round, described in this paper, lasted for five weeks, from
August 12, 2022, anywhere on Earth (AoE), to September
16, 2022, AoE. Information for participants, including terms
and conditions and sample code for interacting with the
competition API, is hosted at https://mlmac.io.

A further round, not detailed in this paper, was hosted on
Kaggle in November and December 2022.

A. Scenario

We consider a scenario in which an adversary has deployed
a language model for text generation via an API where users
can input a prompt and receive a textual continuation from the
model. Because of the prohibitive cost of training LLMs from
scratch, it is likely the model is based on another model, using
fine-tuning to tailor the output to a particular use case. There
are many base models that have been open sourced for research
by large corporations, like GPT models by OpenAI, while
other models are intended to remain proprietary. Knowing
the provenance of the model may reveal clues about the
adversary’s affiliations. It would also allow a better under-
standing of the fine-tuned model, e.g. what data was included
in the base model training and the size, architecture and
vulnerabilities of the model. Attributing the model’s origins
may also uncover IP theft, if the adversary’s model is based
on a ‘stolen’ proprietary model, or abuse, if an open source
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TABLE I
SAMPLE SOLUTION DEMONSTRATING AN UNUSED BASE MODEL E AND A

PAIRING WITH None.

model 1 model 2 model 3 model 4 model 5
base model A X
base model B X
base model C X
base model D X
base model E

None X

model being used outside the model’s licensing agreement or
terms of service. Challenge participants attempt to discover
the origin of the fine-tuned model by interacting with it via
the adversary’s natural language generation API, but aim to
keep their total number of calls low to avoid detection. They
have full access to a set of documented ‘base models’ that
likely underlie the adversary’s model.

In our scenario, base models have not been watermarked,
and no particular effort has been made by the adversary to
obfuscate the fine-tuned model’s provenance.

B. Participation

A competition API is provided for participants to interact
with the fine-tuned and base models. Participants interact with
fine-tuned models using integer IDs and base models using
the model’s ID from the Hugging Face model hub1. The API
provided by the MLMAC team wraps Hugging Face’s Text
Generation inference API, allowing participants to generate
text from the models starting with a conditioning string. All
other decoding settings are fixed so that continuations are
generated using sampling with a temperature of 3.0. This
reflects the threat scenario where participants have limited
access to an adversary’s fine-tuned model. Calls to the fine-
tuned models are counted, as the number of calls factors into
the competition ranking.

To mimic a forensic scenario where participants have open
access to the base models, use of base models is not con-
strained. Calls to the base models through the MLMAC API
are not counted or factored into the competition rankings.
Participants may also choose to interact with the base models
directly by downloading them from the Hugging Face hub and
using the transformers library, e.g. to obtain model probabil-
ities or test different sampling parameters. Model cards and
other documentation on the Internet provide participants with
more information about the base models.

Solutions are submitted in the form of (fine-tuned model,
base model) pairs. Participants are informed that there may
not be a one-to-one mapping between base and fine-tuned
models: there may be extraneous base models, multiple fine-
tuned models with the same base, and/or fine-tuned models
that are not derived from any of the provided base models.
An example solution is shown in Table I.

1https://huggingface.co/models

TABLE II
PARTICIPANTS AND RESULTS OF MLMAC.

Username # Correct Queries Student
Pranjal2041 7 1212 X

YoulongDing 6 168 X
Jordine 6 244 X

FarhanDhanani 6 1084 X
MLMAC Team Baseline 6 500000

sheetal57 5 604
curranjanssens 4 516 X

ogozuacik 4 13825
nick-jia 3 12 X

JosephTLucas 3 843
ambrishrawat 3 1725

oleszko 2 11
ri638 1 0 X

Saifulislamsalim79 0 2 X

C. Evaluation

Solutions are evaluated according to the following rank-
ordered criteria:

1) Number of correct pairs.
2) Fewest queries to fine-tuned models: ties are broken

by selecting the contestant who used the fewest API
queries to interact with the fine-tuned models. (Queries
to the base models are not counted.)

3) Earliest submission time: any subsequent ties are be
broken by selecting the contestant whose final submis-
sion was earliest.

Prizes were awarded to winning solutions: USD $3,000
and USD $1,500 for second place, respectively. In addition,
the three highest-ranking student submissions were awarded
additional support to attend either CAMLIS 2022 or SaTML
2023 in the form of conference admission and USD $1,500
to offset travel and accommodation costs. Participants were
required to publish their solution to qualify for prizes. These
could take any form, such as blog post or pre-print paper.
Schmidt Futures and Mercatus Center generously provided
funding for logistics, prizes and travel grants.

III. RESULTS

Thirteen teams submitted solutions to MLMAC. Their ac-
curacy and number of queries are reported in Table II. Partic-
ipants’ approaches are broadly characterized in Table III. The
most successful approaches are accurate about half the time.
The top-scoring team correctly identified seven base models.
Three additional teams got six correct, with their submissions
differentiated by the number of calls to the fine-tuned model
APIs. The top two teams were awarded the cash prizes, and
the top three teams, all students, received the student travel
awards. The top four teams and participant JosephTLucas
shared details of their approach through blog posts, notes
and an arXiv paper [8]–[12]. The number of API calls was
relatively low among most submissions, from hundreds to low
thousands of calls. While several teams submitted answers
with an extremely low number of calls, none of these groups
shared any information about their approach.
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TABLE III
DOCUMENTED PARTICIPANT APPROACHES

Approach Specific approach
Manual Reasoning about base model training data Temporal range [8]; Domain [8]–[10]; Language [8]–[10]; Model-specific special tokens [8];

Length [8], [10]
Similar output to base model, given same query Gibberish/repetition [9], [10]; Same continuation [10]
Observations about the API Time to load and API failures [9], [10]

Automatic Similar output to base model, given same query Edit distance [11]; Machine translation metrics [12]; Next character (baseline)
Similar vocabulary use Term-document vector similarity [12]
Model of base model output Neural network attribution model [12]

TABLE IV
COMPETITION SOLUTION. MODELS ARE IDENTIFIED BY THEIR NAMES IN THE HUGGING FACE HUB.

Model
ID

Fine-tuned Model Base Model # Correct
Attributions

0 LACAI/DialoGPT-large-PFG microsoft/DialoGPT-large 4
1 BramVanroy/gpt-neo-125M_finetuned-tolkien EleutherAI/gpt-neo-125M 4
2 MultiTrickFox/bloom-2b5_Zen bigscience/bloom-2b5 7
3 mrm8488/GPT-2-finetuned-covid-bio-medrxiv gpt2 0
4 projectaligned/gpt2-xl-reddit-writingprompts-behavior-cloning gpt2-xl 5
5 aliosm/ComVE-distilgpt2 distilgpt2 2
6 google/reformer-crime-and-punishment None 1
7 Salesforce/codegen-350M-mono Salesforce/codegen-350M-multi 9
8 wvangils/BLOOM-350m-Beatles-Lyrics-finetuned-newlyrics bigscience/bloom-350m 1
9 hakurei/lit-6B EleutherAI/gpt-j-6B 4
10 textattack/xlnet-base-cased-rotten-tomatoes xlnet-base-cased 9
11 lvwerra/gpt2-imdb gpt2 4
- None facebook/opt-350m -

The solution to the challenge is presented in Table IV. Note
that gpt2 is the base model of two fine-tuned models, one
fine-tuned model should be attributed to none of the base
models in the set, and the list of base models provided to
the participants included facebook/opt350m though there
was no fine-tuned version in the challenge set. The number
of correct attributions per model ranges from zero to nine of
the thirteen participating groups. The two pairs that are most
often correctly identify have particularly distinctive output:
fine-tuned model 7 and its base model both output computer
code, and fine-tuned model 10 and its base model both produce
repetitive text.

A. Manual Approaches

The top three teams all used manual approaches with no
automatic component. The participants hand wrote and/or cu-
rated prompts to test model output for particular clues. These
prompts were mostly well-formed language, not gibberish or
random strings. Then they manually reviewed the outputs and
reasoned about them. Their clues fell under three categories:
differences between base model training data, similarity in out-
put between models, and observations about the competition
API.

The participants reasoned about the fine-tuned models by
searching for differences they could trace to the training data of
the base model. The training data used for most base models is
documented online in the model card. Participants assume that
characteristics of this data will persist after fine-tuning or are
consistent with any fine-tuning data. Several observed that the
temporal range of base model training data varied, and looked

for clues using prompts about the current president or COVID-
19. Several models were trained on particular domains, such
as code or dialogue, and participants reasoned that fine-tuned
models would share the same domain. Base models are trained
on different groups of languages or monolingual English, so
participants examined how the models continued prompts in
other languages, such as Chinese and Indic languages. One
participant attempted to insert model-specific tokens into the
prompt, such as those used between different text sequences
during training, to observe model behavior. Participants docu-
mented additional conclusions about fine-tuning data that they
were not able to apply to the competition, like that one was
trained on Beatles lyrics.

Participants also observed similarities in output between
base models and fine-tuned models. One base model and
one fine-tuned model tended to output repetitive gibberish.
In addition, several fine-tuned and base model pairs were
observed to have the same continuation for some natural
language prompts. This was even observed between different
sizes of the same model architecture.

Finally, two participants used observations about the com-
petition API, specifically that two models took much longer to
load and failed to return a response more often. They attributed
these fine-tuned models to the largest base models.

B. Automatic Approaches

Two participants report using automatic approaches. Both
used diverse prompts to increase the odds of finding contin-
uations where the fine-tuned model was very similar to the
base model, one by creating random strings and the other



by selecting a set of inputs from public NLP datasets. These
participants measured similarity between outputs for the same
prompt using similarity metrics, such as those from machine
translation, and and term vectors like those used in information
retrieval. Ultimately, the fourth-place participant trained a
neural network model to discriminate between the outputs
of base models, then submitted their attribution based on the
model’s predictions on a set of fine-tuned model outputs.

Our leaderboard includes a baseline solution by the ML-
MAC team, correctly attributing six models. This automatic
solution generated random strings and obtained 100 contin-
uations from each model for each using beam search (beam
search decoding would not be possible under the competition
API). Each fine-tuned model was attributed to the base model
that had the most similar distribution of first characters of the
continuations. The total number of strings generated to support
this approach was much higher than any participant’s solution.
The baseline solution was not shared with participants, but
rather used to set expectations of the difficulty of the challenge.

IV. CONCLUSIONS

Language model attribution techniques are still in their
infancy. Our most successful participants used manual ap-
proaches that relied on hand-crafting prompts and reasoning
about public information shared about the base models. These
techniques will not scale to a larger number of possible base
models, especially base models that share training data, and
don’t establish a ‘fingerprint’ that could positively attribute
a stolen model when using a process of elimination is not
possible. It’s possible, however, that the features used in par-
ticipants’ manual analyses could inform attribution algorithms
in the future. Furthermore, automated approaches that measure
output similarity between base and fine-tuned models from the
same prompt yielded some success. Future approaches could
build on this work by learning input prompts that produce
more unique outputs in a given model. The proposed solutions
so far use a very modest number of API calls; it remains to be
seen if their accuracy would improve as API calls increased,
especially for automatic approaches.

This competition has established a baseline for model at-
tribution for non-watermarked models. Attribution techniques
represent a powerful companion tool for regulation, tracking,
and remediation. Even if security measures like watermarking
become common practice, attribution techniques could serve
as forensic tools as adversaries try to evade them.
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